Cancer Cell Culture: The Basics and Two-Dimensional Cultures

Despite significant advances in investigative and therapeutic methodologies for cancer, 2D cell culture remains an essential and evolving competency in this fast-paced industry. From basic monolayer cultures and functional assays to more recent and ever-advancing cell-based cancer interventions, 2D cell culture plays a crucial role in cancer diagnosis, prognosis, and treatment. Research and development in this field call for a great deal of optimization, while the heterogenous nature of cancer itself demands personalized precision for its intervention. In this way, 2D cell culture is ideal, providing a highly adaptive and responsive platform, where skills can be honed and techniques modified. Furthermore, it is arguably the most efficient, economical, and sustainable methodology available to researchers and clinicians alike.

In this chapter, we discuss the history of cell culture and the varying types of cell and cell lines used today, the techniques used to characterize and authenticate them, the applications of 2D cell culture in cancer diagnosis and prognosis, and more recent developments in the area of cell-based cancer interventions and vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 181.89 Price includes VAT (France)

Softcover Book EUR 163.51 Price includes VAT (France)

Hardcover Book EUR 232.09 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Three-dimensional in vitro culture models in oncology research

Article Open access 11 September 2022

A View from the Cellular Perspective

Chapter © 2021

A systematic review on the culture methods and applications of 3D tumoroids for cancer research and personalized medicine

Article Open access 28 May 2024

References

  1. Hudu SA, Alshrari AS, Syahida A, Sekawi Z (2016) Cell culture, technology: enhancing the culture of diagnosing human diseases. J Clin Diagn Res 10(3):De01-5. https://doi.org/10.7860/jcdr/2016/15837.7460ArticlePubMedGoogle Scholar
  2. Roux W (1887) Beiträge zur Entwickelungsmechanik des Embryo. Arch Mikrosk Anat 29(1):157–212 ArticleGoogle Scholar
  3. Yao T, Asayama Y (2017) Animal-cell culture media: history, characteristics, and current issues. Reprod Med Biol 16(2):99–117. https://doi.org/10.1002/rmb2.12024ArticlePubMedPubMed CentralGoogle Scholar
  4. Ljunggren C (1898) On the safe survival of skin epithelial cells outside of the human organism with special reference to skin transplantation. Nordiskt Medicinskt Arkiv 31:1–10 Google Scholar
  5. Maehle AH (2011) Ambiguous cells: the emergence of the stem cell concept in the nineteenth and twentieth centuries. Notes Rec R Soc Lond 65(4):359–378. https://doi.org/10.1098/rsnr.2011.0023ArticlePubMedGoogle Scholar
  6. Harnden DG (1977) Cell biology and cell culture methods—a review. In: Harkness RA, Cockburn F (eds) The cultured cell and inherited metabolic disease: monograph based upon proceedings of the fourteenth symposium of the society for the study of inborn errors of metabolism. Springer, Dordrecht, pp 3–15 ChapterGoogle Scholar
  7. Fan W, Lin CS, Potluri P, Procaccio V, Wallace DC (2012) mtDNA lineage analysis of mouse L-cell lines reveals the accumulation of multiple mtDNA mutants and intermolecular recombination. Genes Dev 26(4):384–394. https://doi.org/10.1101/gad.175802.111ArticleCASPubMedPubMed CentralGoogle Scholar
  8. Philippeos C, Hughes RD, Dhawan A, Mitry RR (2012) Introduction to cell culture. Methods Mol Biol 806:1–13. https://doi.org/10.1007/978-1-61779-367-7_1ArticleCASPubMedGoogle Scholar
  9. Langdon SP (2004) Characterization and authentication of cancer cell lines: an overview. Methods Mol Med 88:33–42. https://doi.org/10.1385/1-59259-406-9:33ArticleCASPubMedGoogle Scholar
  10. Segeritz CP, Vallier L (2017) Cell culture: growing cells as model systems in vitro. Basic Sci Methods Clin Res:151–172. https://doi.org/10.1016/B978-0-12-803077-6.00009-6. Epub 2017 Apr 7
  11. Richter M, Piwocka O, Musielak M, Piotrowski I, Suchorska WM, Trzeciak T (2021) From donor to the lab: a fascinating journey of primary cell lines. Front Cell Dev Biol:9. https://doi.org/10.3389/fcell.2021.711381
  12. Kaur G, Dufour JM (2012) Cell lines: valuable tools or useless artifacts. Spermatogenesis 2(1):1–5. https://doi.org/10.4161/spmg.19885ArticlePubMedPubMed CentralGoogle Scholar
  13. PromoCell (2019) Human primary cells and immortal cell lines: differences and advantages. promocell.com: PromoCell
  14. Gilgenkrantz S (2014) Sixty years of HeLa cell cultures. Hist Sci Med 48(1):139–144 PubMedGoogle Scholar
  15. Stelzer-Braid S, Walker GJ, Aggarwal A, Isaacs SR, Yeang M, Naing Z et al (2020) Virus isolation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for diagnostic and research purposes. Pathology 52(7):760–763. https://doi.org/10.1016/j.pathol.2020.09.012ArticleCASPubMedGoogle Scholar
  16. Landry JJ, Pyl PT, Rausch T, Zichner T, Tekkedil MM, Stütz AM et al (2013) The genomic and transcriptomic landscape of a HeLa cell line. G3 (Bethesda) 3(8):1213–1224. https://doi.org/10.1534/g3.113.005777ArticleCASPubMedGoogle Scholar
  17. Lucey BP, Nelson-Rees WA, Hutchins GM (2009) Henrietta Lacks, HeLa cells, and cell culture contamination. Arch Pathol Lab Med 133(9):1463–1467. https://doi.org/10.5858/133.9.1463ArticlePubMedGoogle Scholar
  18. Gillet JP, Varma S, Gottesman MM (2013) The clinical relevance of cancer cell lines. J Natl Cancer Inst 105(7):452–458. https://doi.org/10.1093/jnci/djt007ArticleCASPubMedPubMed CentralGoogle Scholar
  19. Wilding JL, Bodmer WF (2014) Cancer cell lines for drug discovery and development. Cancer Res 74(9):2377–2384. https://doi.org/10.1158/0008-5472.Can-13-2971ArticleCASPubMedGoogle Scholar
  20. Almeida JL, Cole KD, Plant AL (2016) Standards for cell line authentication and beyond. PLoS Biol 14(6):e1002476. https://doi.org/10.1371/journal.pbio.1002476ArticlePubMedPubMed CentralGoogle Scholar
  21. Furlong MT, Hough CD, Sherman-Baust CA, Pizer ES, Morin PJ (1999) Evidence for the colonic origin of ovarian cancer cell line SW626. J Natl Cancer Inst 91(15):1327–1328. https://doi.org/10.1093/jnci/91.15.1327ArticleCASPubMedGoogle Scholar
  22. Yang Y-HK, Ogando CR, Wang See C, Chang T-Y, Barabino GA (2018) Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther 9(1):131. https://doi.org/10.1186/s13287-018-0876-3ArticleCASPubMedPubMed CentralGoogle Scholar
  23. Kapalczynska M, Kolenda T, Przybyla W, Zajaczkowska M, Teresiak A, Filas V et al (2018) 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Arch Med Sci 14(4):910–919. https://doi.org/10.5114/aoms.2016.63743ArticleCASPubMedGoogle Scholar
  24. O’Brien SJ (2001) Cell culture forensics. Proc Natl Acad Sci 98(14):7656–7658. https://doi.org/10.1073/pnas.141237598ArticlePubMedPubMed CentralGoogle Scholar
  25. Stacey GN (2000) Cell contamination leads to inaccurate data: we must take action now. Nature 403(6768):356. https://doi.org/10.1038/35000394ArticleCASPubMedGoogle Scholar
  26. Rojas A, Gonzalez I (2018) Cell line cross-contamination: a detrimental issue in current biomedical research. Cell Biol Int 42(3):272. https://doi.org/10.1002/cbin.10904ArticlePubMedGoogle Scholar
  27. Stacey GB, Hawkins E, Hawkins JR (1999) DNA fingerprinting and characterisation of animal cell lines. In: Portner R (ed) Animal cell biotechnology: methods and protocols. Methods in biotechnology. Springer Nature Google Scholar
  28. Nelson-Rees WA, Flandermeyer RR, Hawthorne PK (1974) Banded marker chromosomes as indicators of intraspecies cellular contamination. Science (New York, NY) 184(4141):1093–1096. https://doi.org/10.1126/science.184.4141.1093ArticleCASGoogle Scholar
  29. Nelson-Rees WA, Daniels DW, Flandermeyer RR (1981) Cross-contamination of cells in culture. Science (New York, NY) 212(4493):446–452. https://doi.org/10.1126/science.6451928ArticleCASGoogle Scholar
  30. Nelson-Rees WA, Flandermeyer RR (1976) HeLa cultures defined. Science (New York, NY) 191(4222):96–98. https://doi.org/10.1126/science.1246601ArticleCASGoogle Scholar
  31. Gartler SM (1968) Apparent HeLa cell contamination of human Heteroploid cell lines. Nature 217(5130):750–751. https://doi.org/10.1038/217750a0ArticleCASPubMedGoogle Scholar
  32. MacLeod RA, Dirks WG, Matsuo Y, Kaufmann M, Milch H, Drexler HG (1999) Widespread intraspecies cross-contamination of human tumor cell lines arising at source. Int J Cancer 83(4):555–563. https://doi.org/10.1002/(sici)1097-0215(19991112)83:43.0.co;2-2ArticleCASPubMedGoogle Scholar
  33. Kaplan J, Hukku B (1998) Chapter 11: Cell line characterization and authentication. In: Mather JP, Barnes D (eds) Methods in cell biology. Academic, pp 203–216 Google Scholar
  34. Cui C, Shu W, Li P (2016) Fluorescence in situ hybridization: cell-based genetic diagnostic and research applications. Front Cell Dev Biol 4:89. https://doi.org/10.3389/fcell.2016.00089ArticlePubMedPubMed CentralGoogle Scholar
  35. Kannan TP, Zilfalil BA (2009) Cytogenetics: past, present and future. Malays J Med Sci 16(2):4–9 PubMedPubMed CentralGoogle Scholar
  36. Guo B, Han X, Wu Z, Da W, Zhu H (2014) Spectral karyotyping: an unique technique for the detection of complex genomic rearrangements in leukemia. Transl Pediatr 3(2):135–139. https://doi.org/10.3978/j.issn.2224-4336.2014.01.02ArticlePubMedPubMed CentralGoogle Scholar
  37. Szuhai K, Tanke HJ (2006) COBRA: combined binary ratio labeling of nucleic-acid probes for multi-color fluorescence in situ hybridization karyotyping. Nat Protoc 1(1):264–275. https://doi.org/10.1038/nprot.2006.41ArticleCASPubMedGoogle Scholar
  38. Henegariu O, Heerema NA, Bray-Ward P, Ward DC (1999) Colour-changing karyotyping: an alternative to M-FISH/SKY. Nat Genet 23(3):263–264. https://doi.org/10.1038/15437ArticleCASPubMedGoogle Scholar
  39. Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314(6006):67–73. https://doi.org/10.1038/314067a0ArticleCASPubMedGoogle Scholar
  40. Nicholson WL, Comer JA, Sumner JW, Gingrich-Baker C, Coughlin RT, Magnarelli LA et al (1997) An indirect immunofluorescence assay using a cell culture-derived antigen for detection of antibodies to the agent of human granulocytic ehrlichiosis. J Clin Microbiol 35(6):1510–1516. https://doi.org/10.1128/jcm.35.6.1510-1516.1997ArticleCASPubMedPubMed CentralGoogle Scholar
  41. Shampo MA, Kyle RA, Kary B (2002) Mullis—Nobel laureate for procedure to replicate DNA. Mayo Clin Proc 77(7):606. https://doi.org/10.4065/77.7.606ArticlePubMedGoogle Scholar
  42. O’Brien SU, Kleiner G, Olson R, Shannon JE (1977) Enzyme polymorphisms as genetic signatures in human cell cultures. Science (New York, NY) 195(4284):1345–1348. https://doi.org/10.1126/science.841332ArticleGoogle Scholar
  43. Klaus GS, Dörthe G, Hans GD (1995) Isoenzyme analysis as a rapid method for the examination of the species identity of cell cultures. In Vitro Cell Dev Biol Anim 31(2):115–119 ArticleGoogle Scholar
  44. Nims RW, Shoemaker AP, Bauernschub MA, Rec LJ, Harbell JW (1998) Sensitivity of isoenzyme analysis for the detection of interspecies cell line cross-contamination. In Vitro Cell Dev Biol Anim 34(1):35–39. https://doi.org/10.1007/s11626-998-0050-9ArticleCASPubMedGoogle Scholar
  45. Fernandes IR, Russo FB, Pignatari GC, Evangelinellis MM, Tavolari S, Muotri AR et al (2016) Fibroblast sources: where can we get them? Cytotechnology 68(2):223–228. https://doi.org/10.1007/s10616-014-9771-7ArticleCASPubMedGoogle Scholar
  46. Stacey GN (2011) Cell culture contamination. Methods Mol Biol 731:79–91. https://doi.org/10.1007/978-1-61779-080-5_7ArticleCASPubMedGoogle Scholar
  47. Vignon C, Debeissat C, Georget M-T, Bouscary D, Gyan E, Rosset P et al (2013) Flow cytometric quantification of all phases of the cell cycle and apoptosis in a two-color fluorescence plot. PLoS One 8(7):e68425. https://doi.org/10.1371/journal.pone.0068425ArticleCASPubMedPubMed CentralGoogle Scholar
  48. Pekle E, Smith A, Rosignoli G, Sellick C, Smales CM, Pearce C (2019) Application of imaging flow cytometry for the characterization of intracellular attributes in Chinese hamster ovary cell lines at the single-cell level. Biotechnol J 14(7):e1800675. https://doi.org/10.1002/biot.201800675ArticleCASPubMedGoogle Scholar
  49. Puts JJ, Vooijs GP, Huysmans A, van Aspert A, Ramaekers FC (1986) Cytoskeletal proteins as tissue-specific markers in cytopathology. Exp Cell Biol 54(2):73–79. https://doi.org/10.1159/000163346ArticleCASPubMedGoogle Scholar
  50. Jedlitschky G, Hoffmann U, Kroemer HK (2006) Structure and function of the MRP2 (ABCC2) protein and its role in drug disposition. Expert Opin Drug Metab Toxicol 2(3):351–366. https://doi.org/10.1517/17425255.2.3.351ArticleCASPubMedGoogle Scholar
  51. Pawlak KJ, Wiebe JP (2007) Regulation of estrogen receptor (ER) levels in MCF-7 cells by progesterone metabolites. J Steroid Biochem Mol Biol 107(3–5):172–179. https://doi.org/10.1016/j.jsbmb.2007.05.030ArticleCASPubMedGoogle Scholar
  52. Cohen JS, Benton AS, Nwachukwu F, Ozedirne T, Teach SJ, Freishtat RJ (2010) P-glycoprotein transporter expression on a549 respiratory epithelial cells is positively correlated with intracellular dexamethasone levels. J Investig Med 58(8):991–994 Google Scholar
  53. Guillouzo A, Corlu A, Aninat C, Glaise D, Morel F, Guguen-Guillouzo C (2007) The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem Biol Interact 168(1):66–73. https://doi.org/10.1016/j.cbi.2006.12.003ArticleCASPubMedGoogle Scholar
  54. Bandele OJ, Santillo MF, Ferguson M, Wiesenfeld PL (2012) In vitro toxicity screening of chemical mixtures using HepG2/C3A cells. Food Chem Toxicol 50(5):1653–1659. https://doi.org/10.1016/j.fct.2012.02.016ArticleCASPubMedGoogle Scholar
  55. Mossoba ME, Sprando RL (2020) In vitro to in vivo concordance of toxicity using the human proximal tubule cell line HK-2. Int J Toxicol 39(5):452–464. https://doi.org/10.1177/1091581820942534ArticleCASPubMedGoogle Scholar
  56. Swain RJ, Kemp SJ, Goldstraw P, Tetley TD, Stevens MM (2010) Assessment of cell line models of primary human cells by Raman spectral phenotyping. Biophys J 98(8):1703–1711. https://doi.org/10.1016/j.bpj.2009.12.4289ArticleCASPubMedPubMed CentralGoogle Scholar
  57. Fisher T (2022) Gibco cell culture basics: cell lines. Accessed 20 Apr 2022 Google Scholar
  58. Vaidyanathan R, Soon RH, Zhang P, Jiang K, Lim CT (2018) Cancer diagnosis: from tumor to liquid biopsy and beyond. Lab Chip 19(1):11–34. https://doi.org/10.1039/c8lc00684aArticleCASPubMedGoogle Scholar
  59. Lone SN, Nisar S, Masoodi T, Singh M, Rizwan A, Hashem S et al (2022) Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. Mol Cancer 21(1):79. https://doi.org/10.1186/s12943-022-01543-7ArticleCASPubMedPubMed CentralGoogle Scholar
  60. Maly V, Maly O, Kolostova K, Bobek V (2019) Circulating tumor cells in diagnosis and treatment of lung cancer. In Vivo 33(4):1027–1037. https://doi.org/10.21873/invivo.11571ArticleCASPubMedPubMed CentralGoogle Scholar
  61. de Wit S, Zeune LL, Hiltermann TJN, Groen HJM, Dalum GV, Terstappen L (2018) Classification of cells in CTC-enriched samples by advanced image analysis. Cancers (Basel) 10(10). https://doi.org/10.3390/cancers10100377
  62. Spell DW, Jones DV Jr, Harper WF, David BJ (2004) The value of a complete blood count in predicting cancer of the colon. Cancer Detect Prev 28(1):37–42. https://doi.org/10.1016/j.cdp.2003.10.002ArticlePubMedGoogle Scholar
  63. Jaime-Pérez JC, García-Arellano G, Herrera-Garza JL, Marfil-Rivera LJ, Gómez-Almaguer D (2019) Revisiting the complete blood count and clinical findings at diagnosis of childhood acute lymphoblastic leukemia: 10-year experience at a single center. Hematol Transfus Cell Ther 41(1):57–61. https://doi.org/10.1016/j.htct.2018.05.010ArticlePubMedGoogle Scholar
  64. Liu Y, Xu J (2019) High-resolution microscopy for imaging cancer pathobiology. Curr Pathobiol Rep 7(3):85–96. https://doi.org/10.1007/s40139-019-00201-wArticleCASPubMedPubMed CentralGoogle Scholar
  65. Kumar R, Srivastava R, Srivastava S (2015) Detection and classification of cancer from microscopic biopsy images using clinically significant and biologically interpretable features. J Med Eng 2015:457906. https://doi.org/10.1155/2015/457906ArticlePubMedPubMed CentralGoogle Scholar
  66. Gurina TS, Simms L (2022) Histology, Staining. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC Google Scholar
  67. Amedee RG, Dhurandhar NR (2001) Fine-needle aspiration biopsy. Laryngoscope 111(9):1551–1557. https://doi.org/10.1097/00005537-200109000-00011ArticleCASPubMedGoogle Scholar
  68. Bilous M (2010) Breast core needle biopsy: issues and controversies. Mod Pathol 23(Suppl 2):S36–S45. https://doi.org/10.1038/modpathol.2010.34ArticlePubMedGoogle Scholar
  69. Beard CJ, Ponnarasu S, Schmieder GJ (2022) Excisional Biopsy. StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC Google Scholar
  70. Pflugfelder A, Weide B, Eigentler TK, Forschner A, Leiter U, Held L et al (2010) Incisional biopsy and melanoma prognosis: facts and controversies. Clin Dermatol 28(3):316–318. https://doi.org/10.1016/j.clindermatol.2009.06.013ArticlePubMedGoogle Scholar
  71. Lin X, Lin R, Lu F, Yang Y, Wang C, Fang H et al (2021) Laparoscopic biopsy and staging for locally advanced pancreatic cancer: experiences of 76 consecutive patients in a single institution. Langenbeck’s Arch Surg 406(7):2315–2323. https://doi.org/10.1007/s00423-021-02199-5ArticleGoogle Scholar
  72. Reid BJ, Weinstein WM, Lewin KJ, Haggitt RC, VanDeventer G, DenBesten L et al (1988) Endoscopic biopsy can detect high-grade dysplasia or early adenocarcinoma in Barrett’s esophagus without grossly recognizable neoplastic lesions. Gastroenterology 94(1):81–90. https://doi.org/10.1016/0016-5085(88)90613-0ArticleCASPubMedGoogle Scholar
  73. Nischal U, Nischal K, Khopkar U (2008) Techniques of skin biopsy and practical considerations. J Cutan Aesthet Surg 1(2):107–111. https://doi.org/10.4103/0974-2077.44174ArticlePubMedPubMed CentralGoogle Scholar
  74. Ayre JE (1947) Selective cytology smear for diagnosis of cancer. Am J Obstet Gynecol 53(4):609–617. https://doi.org/10.1016/0002-9378(47)90278-0ArticleCASPubMedGoogle Scholar
  75. Bal MS, Goyal R, Suri AK, Mohi MK (2012) Detection of abnormal cervical cytology in Papanicolaou smears. J Cytol 29(1):45–47. https://doi.org/10.4103/0970-9371.93222ArticlePubMedPubMed CentralGoogle Scholar
  76. Karam R, Conner B, LaDuca H, McGoldrick K, Krempely K, Richardson ME et al (2019) Assessment of diagnostic outcomes of RNA genetic testing for hereditary cancer. JAMA Netw Open 2(10):e1913900. https://doi.org/10.1001/jamanetworkopen.2019.13900ArticlePubMedPubMed CentralGoogle Scholar
  77. Carethers JM (2014) DNA testing and molecular screening for colon cancer. Clin Gastroenterol Hepatol 12(3):377–381. https://doi.org/10.1016/j.cgh.2013.12.007ArticleCASPubMedGoogle Scholar
  78. Greene MH (1997) Genetics of breast cancer. Mayo Clin Proc 72(1):54–65. https://doi.org/10.4065/72.1.54ArticleCASPubMedGoogle Scholar
  79. Bouchard L, Blancquaert I, Eisinger F, Foulkes WD, Evans G, Sobol H et al (2004) Prevention and genetic testing for breast cancer: variations in medical decisions. Soc Sci Med 58(6):1085–1096. https://doi.org/10.1016/s0277-9536(03)00263-6ArticlePubMedGoogle Scholar
  80. Fernandez-Rozadilla C, Simões AR, Lleonart ME, Carnero A, Carracedo Á (2021) Tumor profiling at the service of cancer therapy. Front Oncol 10:595613. https://doi.org/10.3389/fonc.2020.595613ArticlePubMedPubMed CentralGoogle Scholar
  81. Chakravarty D, Solit DB (2021) Clinical cancer genomic profiling. Nat Rev Genet 22(8):483–501. https://doi.org/10.1038/s41576-021-00338-8ArticleCASPubMedGoogle Scholar
  82. Harnan S, Tappenden P, Cooper K, Stevens J, Bessey A, Rafia R et al (2019) Tumour profiling tests to guide adjuvant chemotherapy decisions in early breast cancer: a systematic review and economic analysis. Health Technol Assess 23(30):1–328. https://doi.org/10.3310/hta23300ArticlePubMedPubMed CentralGoogle Scholar
  83. Kitaeva KV, Rutland CS, Rizvanov AA, Solovyeva VV (2020) Cell culture based in vitro test systems for anticancer drug screening. Front Bioeng Biotechnol 8:322. https://doi.org/10.3389/fbioe.2020.00322ArticlePubMedPubMed CentralGoogle Scholar
  84. Mingaleeva RN, Solovieva VV, Blatt NL, Rizvanov AA (2013) Application of cell and tissue cultures for potential anti-cancer/oncology drugs screening in vitro. Cell Transplant Tissue Eng 8(2):20–28 Google Scholar
  85. Borenfreund E, Babich H, Martin-Alguacil N (1988) Comparisons of two in vitro cytotoxicity assays—the neutral red (NR) and tetrazolium MTT tests. Toxicol In Vitro 2(1):1–6. https://doi.org/10.1016/0887-2333(88)90030-6ArticleCASPubMedGoogle Scholar
  86. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1(5):2315–2319. https://doi.org/10.1038/nprot.2006.339ArticleCASPubMedGoogle Scholar
  87. Gutiérrez L, Stepien G, Gutiérrez L, Pérez-Hernández M, Pardo J, Pardo J et al (2017) 1.09 – Nanotechnology in drug discovery and development. In: Chackalamannil S, Rotella D, Ward SE (eds) Comprehensive medicinal chemistry III. Elsevier, Oxford, pp 264–295 ChapterGoogle Scholar
  88. Kamiloglu S, Sari G, Ozdal T, Capanoglu E (2020) Guidelines for cell viability assays. Food Front 1(3):332–349. https://doi.org/10.1002/fft2.44ArticleGoogle Scholar
  89. Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the MTT assay. Cold Spring Harb Protoc. 2018;2018(6): https://doi.org/10.1101/pdb.prot095505BookGoogle Scholar
  90. Mueller H, Kassack MU, Wiese M (2004) Comparison of the usefulness of the MTT, ATP, and Calcein assays to predict the potency of cytotoxic agents in various human cancer cell lines. J Biomol Screen 9(6):506–515. https://doi.org/10.1177/1087057104265386ArticleCASPubMedGoogle Scholar
  91. Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the lactate dehydrogenase assay. Cold Spring Harb Protoc. 2018;2018(6). doi: https://doi.org/10.1101/pdb.prot095497BookGoogle Scholar
  92. Al-Nasiry S, Geusens N, Hanssens M, Luyten C, Pijnenborg R (2007) The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod 22(5):1304–1309. https://doi.org/10.1093/humrep/dem011ArticleCASPubMedGoogle Scholar
  93. Gong X, Liang Z, Yang Y, Liu H, Ji J, Fan Y (2020) A resazurin-based, nondestructive assay for monitoring cell proliferation during a scaffold-based 3D culture process. Regen Biomater 7(3):271–281. https://doi.org/10.1093/rb/rbaa002ArticleCASPubMedPubMed CentralGoogle Scholar
  94. Nowak E, Kammerer S, Küpper JH (2018) ATP-based cell viability assay is superior to trypan blue exclusion and XTT assay in measuring cytotoxicity of anticancer drugs Taxol and Imatinib, and proteasome inhibitor MG-132 on human hepatoma cell line HepG2. Clin Hemorheol Microcirc 69(1–2):327–336. https://doi.org/10.3233/ch-189120ArticleCASPubMedGoogle Scholar
  95. Zanoni M, Piccinini F, Arienti C, Zamagni A, Santi S, Polico R et al (2016) 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep 6(1):19103. https://doi.org/10.1038/srep19103ArticleCASPubMedPubMed CentralGoogle Scholar
  96. Ahmann FR, Garewal HS, Schifman R, Celniker A, Rodney S (1987) Intracellular adenosine triphosphate as a measure of human tumor cell viability and drug modulated growth. In Vitro Cell Dev Biol 23(7):474–480. https://doi.org/10.1007/bf02628417ArticleCASPubMedGoogle Scholar
  97. Sharma S, Neale MH, Di Nicolantonio F, Knight LA, Whitehouse PA, Mercer SJ et al (2003) Outcome of ATP-based tumor chemosensitivity assay directed chemotherapy in heavily pre-treated recurrent ovarian carcinoma. BMC Cancer 3:19. https://doi.org/10.1186/1471-2407-3-19ArticlePubMedPubMed CentralGoogle Scholar
  98. Bancone G, Kalnoky M, Chu CS, Chowwiwat N, Kahn M, Malleret B et al (2017) The G6PD flow-cytometric assay is a reliable tool for diagnosis of G6PD deficiency in women and anaemic subjects. Sci Rep 7(1):9822. https://doi.org/10.1038/s41598-017-10045-2ArticlePubMedPubMed CentralGoogle Scholar
  99. Strober W (2015) Trypan blue exclusion test of cell viability. Curr Protoc Immunol 111:A3.B.1-a3.B. https://doi.org/10.1002/0471142735.ima03bs111ArticleGoogle Scholar
  100. Justus CR, Leffler N, Ruiz-Echevarria M, Yang LV (2014) In vitro cell migration and invasion assays. J Vis Exp 88:51046. https://doi.org/10.3791/51046ArticleCASGoogle Scholar
  101. Pijuan J, Barceló C, Moreno DF, Maiques O, Sisó P, Marti RM et al (2019) In vitro cell migration, invasion, and adhesion assays: from cell imaging to data analysis. Front Cell Dev Biol 7:107. https://doi.org/10.3389/fcell.2019.00107ArticlePubMedPubMed CentralGoogle Scholar
  102. Weitz-Schmidt G, Chreng S (2012) Cell adhesion assays. Methods Mol Biol 757:15–30. https://doi.org/10.1007/978-1-61779-166-6_2ArticleCASPubMedGoogle Scholar
  103. Kucik DF, Wu C (2005) Cell-adhesion assays. Methods Mol Biol 294:43–54. https://doi.org/10.1385/1-59259-860-9:043ArticleCASPubMedGoogle Scholar
  104. Chen HC (2005) Boyden chamber assay. Methods Mol Biol 294:15–22. https://doi.org/10.1385/1-59259-860-9:015ArticlePubMedGoogle Scholar
  105. Humphries MJ (2009) Cell adhesion assays. Methods Mol Biol 522:203–210. https://doi.org/10.1007/978-1-59745-413-1_14ArticleCASPubMedGoogle Scholar
  106. Liang C-C, Park AY, Guan J-L (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2(2):329–333. https://doi.org/10.1038/nprot.2007.30ArticleCASPubMedGoogle Scholar
  107. Martinotti S, Ranzato E (2020) Scratch wound healing assay. Methods Mol Biol 2109:225–229. https://doi.org/10.1007/7651_2019_259ArticleCASPubMedGoogle Scholar
  108. Yoo SY, Kwon SM (2013) Angiogenesis and its therapeutic opportunities. Mediat Inflamm 2013:127170. https://doi.org/10.1155/2013/127170ArticleCASGoogle Scholar
  109. Aguilar-Cazares D, Chavez-Dominguez R, Carlos-Reyes A, Lopez-Camarillo C, Hernadez de la Cruz ON, Lopez-Gonzalez JS (2019) Contribution of angiogenesis to inflammation and cancer. Front Oncol 9:1399. https://doi.org/10.3389/fonc.2019.01399ArticlePubMedPubMed CentralGoogle Scholar
  110. PhD SR (2015) What is precision medicine. Accessed 25 Feb 2015 Google Scholar
  111. Waldman AD, Fritz JM, Lenardo MJ (2020) A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 20(11):651–668. https://doi.org/10.1038/s41577-020-0306-5ArticleCASPubMedPubMed CentralGoogle Scholar
  112. Themeli M, Kloss CC, Ciriello G, Fedorov VD, Perna F, Gonen M et al (2013) Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat Biotechnol 31(10):928–933. https://doi.org/10.1038/nbt.2678ArticleCASPubMedPubMed CentralGoogle Scholar
  113. Copier J, Dalgleish A (2006) Overview of tumor cell-based vaccines. Int Rev Immunol 25(5–6):297–319. https://doi.org/10.1080/08830180600992472ArticleCASPubMedGoogle Scholar
  114. Motz GT, Coukos G (2011) The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat Rev Immunol 11(10):702–711. https://doi.org/10.1038/nri3064ArticleCASPubMedGoogle Scholar
  115. Togashi Y, Shitara K, Nishikawa H (2019) Regulatory T cells in cancer immunosuppression – implications for anticancer therapy. Nat Rev Clin Oncol 16(6):356–371. https://doi.org/10.1038/s41571-019-0175-7ArticleCASPubMedGoogle Scholar
  116. Kalos M, June CH (2013) Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity 39(1):49–60. https://doi.org/10.1016/j.immuni.2013.07.002ArticleCASPubMedGoogle Scholar
  117. Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348(6230):62–68. https://doi.org/10.1126/science.aaa4967ArticleCASPubMedPubMed CentralGoogle Scholar
  118. Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA (2003) Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother 26(4):332–342. https://doi.org/10.1097/00002371-200307000-00005ArticlePubMedPubMed CentralGoogle Scholar
  119. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8(4):299–308. https://doi.org/10.1038/nrc2355ArticleCASPubMedPubMed CentralGoogle Scholar
  120. June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC (2018) CAR T cell immunotherapy for human cancer. Science 359(6382):1361–1365. https://doi.org/10.1126/science.aar6711ArticleCASPubMedGoogle Scholar
  121. Kakarla S, Gottschalk S (2014) CAR T cells for solid tumors: armed and ready to go? Cancer J 20(2):151–155. https://doi.org/10.1097/PPO.0000000000000032ArticleCASPubMedPubMed CentralGoogle Scholar
  122. Sterner RC, Sterner RM (2021) CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J 11(4):69. https://doi.org/10.1038/s41408-021-00459-7ArticlePubMedPubMed CentralGoogle Scholar
  123. Jan M, Scarfò I, Larson RC, Walker A, Schmidts A, Guirguis AA et al (2021) Reversible ON- and OFF-switch chimeric antigen receptors controlled by lenalidomide. Sci Transl Med 13(575). https://doi.org/10.1126/scitranslmed.abb6295
  124. ClinicalTrials.gov. CAR-Ts for cancer therapy, recruiting and not recruiting 2022 [updated 06 June 2022. 01 June:[Available from: Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E et al (2002) Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci U S A 99(25):16168–16173. https://doi.org/10.1073/pnas.242600099ArticleCASPubMedPubMed CentralGoogle Scholar
  125. Kim JJ (2015) Applications of iPSCs in cancer research. Biomark Insights 10(Suppl 1):125–131. https://doi.org/10.4137/bmi.S20065ArticleCASPubMedPubMed CentralGoogle Scholar
  126. Zamai L, Ponti C, Mirandola P, Gobbi G, Papa S, Galeotti L et al (2007) NK cells and cancer. J Immunol 178(7):4011–4016. https://doi.org/10.4049/jimmunol.178.7.4011ArticleCASPubMedGoogle Scholar
  127. ClinicalTrials.gov. CYNK-001, Phase II, GBM: ClinicalTrials.gov; 2022 [updated 02 June 2022. 02/06/2022:[Available from: https://clinicaltrials.gov/ct2/show/NCT05218408?term=cynk-001&phase=1&draw=2&rank=1
  128. ClinicalTrials.gov (2022) OnKord, Phase II clinical trials, AML. ClinicalTrials.gov
  129. Liu S, Galat V, Galat Y, Lee YKA, Wainwright D, Wu J (2021) NK cell-based cancer immunotherapy: from basic biology to clinical development. J Hematol Oncol 14(1):7. https://doi.org/10.1186/s13045-020-01014-wArticleCASPubMedPubMed CentralGoogle Scholar
  130. Bald T, Krummel MF, Smyth MJ, Barry KC (2020) The NK cell-cancer cycle: advances and new challenges in NK cell-based immunotherapies. Nat Immunol 21(8):835–847. https://doi.org/10.1038/s41590-020-0728-zArticleCASPubMedPubMed CentralGoogle Scholar
  131. Srivatsan S, Patel JM, Bozeman EN, Imasuen IE, He S, Daniels D et al (2014) Allogeneic tumor cell vaccines: the promise and limitations in clinical trials. Hum Vaccin Immunother 10(1):52–63. https://doi.org/10.4161/hv.26568ArticleCASPubMedGoogle Scholar
  132. Andersen BM, Ohlfest JR (2012) Increasing the efficacy of tumor cell vaccines by enhancing cross priming. Cancer Lett 325(2):155–164. https://doi.org/10.1016/j.canlet.2012.07.012ArticleCASPubMedPubMed CentralGoogle Scholar
  133. Simons JW, Sacks N (2006) Granulocyte-macrophage colony-stimulating factor-transduced allogeneic cancer cellular immunotherapy: the GVAX vaccine for prostate cancer. Urol Oncol 24(5):419–424. https://doi.org/10.1016/j.urolonc.2005.08.021ArticleCASPubMedGoogle Scholar
  134. Santos PM, Butterfield LH (2018) Dendritic cell-based cancer vaccines. J Immunol 200(2):443–449. https://doi.org/10.4049/jimmunol.1701024ArticleCASPubMedGoogle Scholar
  135. Saxena M, van der Burg SH, Melief CJM, Bhardwaj N (2021) Therapeutic cancer vaccines. Nat Rev Cancer 21(6):360–378. https://doi.org/10.1038/s41568-021-00346-0ArticleCASPubMedGoogle Scholar
  136. Blass E, Ott PA (2021) Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol 18(4):215–229. https://doi.org/10.1038/s41571-020-00460-2ArticlePubMedPubMed CentralGoogle Scholar
  137. Ganzinger M, He S, Breuhahn K, Knaup P (2012) On the ontology based representation of cell lines. PLoS One 7:e48584. https://doi.org/10.1371/journal.pone.0048584ArticleCASPubMedPubMed CentralGoogle Scholar
  138. Inc. CB (2014) Cell adhesion, migration and invasion assays. Accessed 09 June 2022 Google Scholar
  139. Lin SL, Chang DC, Chang-Lin S, Lin CH, Wu DT, Chen DT et al (2008) Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA 14(10):2115–2124. https://doi.org/10.1261/rna.1162708ArticleCASPubMedPubMed CentralGoogle Scholar
  140. Miyoshi N, Ishii H, Nagai K, Hoshino H, Mimori K, Tanaka F et al (2010) Defined factors induce reprogramming of gastrointestinal cancer cells. Proc Natl Acad Sci U S A 107(1):40–45. https://doi.org/10.1073/pnas.0912407107ArticlePubMedGoogle Scholar
  141. Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, Pinna CM et al (2011) HIF induces human embryonic stem cell markers in cancer cells. Cancer Res 71(13):4640–4652. https://doi.org/10.1158/0008-5472.Can-10-3320ArticleCASPubMedPubMed CentralGoogle Scholar
  142. Corominas-Faja B, Cufí S, Oliveras-Ferraros C, Cuyàs E, López-Bonet E, Lupu R et al (2013) Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway. Cell Cycle 12(18):3109–3124. https://doi.org/10.4161/cc.26173ArticleCASPubMedPubMed CentralGoogle Scholar
  143. Kim J, Hoffman JP, Alpaugh RK, Rhim AD, Reichert M, Stanger BZ et al (2013) An iPSC line from human pancreatic ductal adenocarcinoma undergoes early to invasive stages of pancreatic cancer progression. Cell Rep 3(6):2088–2099. https://doi.org/10.1016/j.celrep.2013.05.036ArticleCASPubMedPubMed CentralGoogle Scholar

Author information

Authors and Affiliations

  1. Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland Melissa Anne Tutty, Sarah Holmes & Adriele Prina-Mello
  2. Nanomedicine and Molecular Imaging Group, Trinity Translational Medicine Institute (TTMI), School of Medicine, Trinity College Dublin, Dublin, Ireland Adriele Prina-Mello
  3. Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland Adriele Prina-Mello
  4. Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute, Trinity College Dublin, Dublin, Ireland Adriele Prina-Mello
  1. Melissa Anne Tutty